2 research outputs found

    Design of a pressurized lunar rover

    Get PDF
    A pressurized lunar rover is necessary for future long-term habitation of the moon. The rover must be able to safely perform many tasks, ranging from transportation and reconnaissance to exploration and rescue missions. Numerous designs were considered in an effort to maintain a low overall mass and good mobility characteristics. The configuration adopted consists of two cylindrical pressure hulls passively connected by a pressurized flexible passageway. The vehicle has an overall length of 11 meters and a total mass of seven metric tons. The rover is driven by eight independently powered two meter diameter wheels. The dual-cylinder concept allows a combination of articulated frame and double Ackermann steering for executing turns. In an emergency, the individual drive motors allow the option of skid steering as well. Two wheels are connected to either side of each cylinder through a pinned bar which allows constant ground contact. Together, these systems allow the rover to easily meet its mobility requirements. A dynamic isotope power system (DIPS), in conjunction with a closed Brayton cycle, supplied the rover with a continuous supply of 8.5 kW. The occupants are all protected from the DIPS system's radiation by a shield of tantalum. The large amount of heat produced by the DIPS and other rover systems is rejected by thermal radiators. The thermal radiators and solar collectors are located on the top of the rear cylinder. The solar collectors are used to recharge batteries for peak power periods. The rover's shell is made of graphite-epoxy coated with multi-layer insulation (MLI). The graphite-epoxy provides strength while the thermally resistant MLI gives protection from the lunar environment. An elastomer separates the two materials to compensate for the thermal mismatch. The communications system allows for communication with the lunar base with an option for direct communication with earth via a lunar satellite link. The various links are combined into one signal broadcast in the S-band at 2.3 GHz. The rover is fitted with a parabolic reflector disk for S-band transmission, and an omnidirectional antenna for local extravehicular activity (EVA) communication. The rover's guidance, navigation, and control subsystem consists of an inertial guidance system, an orbiting lunar satellite, and an obstacle avoidance system. In addition, the rover is equipped with a number of external fixtures including two telerobotic arms, lights, cameras, EVA storage, manlocks, a docking fixture, solar panels, thermal radiators, and a scientific airlock. In conclusion, this rover meets all of the design requirements and clearly surpasses them in the areas of mobility and maneuverability

    Pressurized Lunar Rover (PLR)

    Get PDF
    The objective of this project was to design a manned pressurized lunar rover (PLR) for long-range transportation and for exploration of the lunar surface. The vehicle must be capable of operating on a 14-day mission, traveling within a radius of 500 km during a lunar day or within a 50-km radius during a lunar night. The vehicle must accommodate a nominal crew of four, support two 28-hour EVA's, and in case of emergency, support a crew of six when near the lunar base. A nominal speed of ten km/hr and capability of towing a trailer with a mass of two mt are required. Two preliminary designs have been developed by two independent student teams. The PLR 1 design proposes a seven meter long cylindrical main vehicle and a trailer which houses the power and heat rejection systems. The main vehicle carries the astronauts, life support systems, navigation and communication systems, lighting, robotic arms, tools, and equipment for exploratory experiments. The rover uses a simple mobility system with six wheels on the main vehicle and two on the trailer. The nonpressurized trailer contains a modular radioisotope thermoelectric generator (RTG) supplying 6.5 kW continuous power. A secondary energy storage for short-term peak power needs is provided by a bank of lithium-sulfur dioxide batteries. The life support system is partly a regenerative system with air and hygiene water being recycled. A layer of water inside the composite shell surrounds the command center allowing the center to be used as a safe haven during solar flares. The PLR 1 has a total mass of 6197 kg. It has a top speed of 18 km/hr and is capable of towing three metric tons, in addition to the RTG trailer. The PLR 2 configuration consists of two four-meter diameter, cylindrical hulls which are passively connected by a flexible passageway, resulting in the overall vehicle length of 11 m. The vehicle is driven by eight independently suspended wheels. The dual-cylinder concept allows articulated as well as double Ackermann steering. The primary power of 8 kW is supplied by a dynamic isotope system using a closed Brayton cycle with a xenon-hydrogen mixture as the working fluid. A sodium-sulfur battery serves as the secondary power source. Excess heat produced by the primary power system and other rover systems is rejected by radiators located on the top of the rear cylinder. The total mass of the PLR 2 is 7015 kg. Simplicity and low total weight have been the driving principles behind the design of PLR 1. The overall configuration consists of a 7-m-long, 3-m-diameter cylindrical main vehicle and a two-wheeled trailer. The cylinder of the main body is capped by eight-section, faceted, semi-hemispherical ends. The trailer contains the RTG power source and is not pressurized. The shell of the main body is constructed of a layered carbon fiber/foam/Kevlar sandwich structure. Included in the shell is a layer of water for radiation protection. The layer of water extends from the front of the rover over the crew compartment and creates a safe haven for the crew during a solar flare-up. The carbon fiber provides the majority of the strength and stiffness and the Kevlar provides protection from micrometeoroids. The Kevlar is covered with a gold foil and multi-layer insulation (MLI) to reduce radiation degradation and heat transfer through the wall. A thin thermoplastic layer seals the fiber and provides additional strength
    corecore